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Motivated by recent experiments on SrCu2�BO3�2, we investigate the ground states of the doped Mott
insulator on the Shastry-Sutherland lattice. To provide a unified theoretical framework for both the valence-
bond solid state found in undoped SrCu2�BO3�2 and the doped counterpart being pursued in on-going experi-
ments, we analyze the t-J-V model via the bond-operator formulation. It is found that superconducting states
emerge upon doping with their properties crucially depending on the underlying valence-bond order. Implica-
tions to future experiments are discussed.
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I. INTRODUCTION

The fate of doped Mott insulators is one of the most chal-
lenging issues in correlated electron physics, especially in
relation to the long-standing problem of high-temperature
superconductivity in cuprates.1–3 Recent discoveries of vari-
ous Mott insulators on geometrically frustrated lattices4–7

and organic materials8 may offer an important clue to this
issue when such materials are doped. While it is possible that
the ground state does not break any symmetry, resulting in a
spin liquid phase, the ground states of Mott insulators often
have broken spin-rotation and lattice-translation symmetries,
leading to antiferromagnetic and valence-bond solid order,
respectively.1 Since both antiferromagnetic and valence-bond
solid phases are generic possibilities for Mott insulators, a
zero-temperature quantum phase transition may occur be-
tween these two phases when an appropriate “control param-
eter” is changed.1 In this context, understanding the effect of
doping on valence-bond solid phases is as equally important
as that on antiferromagnetic phases and would be quite use-
ful for the full classification of all possible phases of doped
Mott insulators.

There are, however, not many clear examples of two-
dimensional valence-bond solid insulator in contrast to the
antiferromagnetic insulator found in high Tc cuprate com-
pounds. The discovery of SrCu2�BO3�2 is particularly impor-
tant in this regard.4,9,10 This material can be characterized by
an antiferromagnetic spin-1 /2 Heisenberg model on the
Shastry-Sutherland lattice.11 Starting from the usual square
lattice, the Shastry-Sutherland lattice can be obtained by set-
ting additional diagonal bonds with two possible orientations
in alternating plaquettes �see Fig. 1�. Let J and J� be the
exchange couplings along the diagonal and the square-lattice
links, respectively. It is known that the valence-bond solid
state or the product state of valence-bond singlets �illustrated
as filled ellipses in Fig. 1� along the diagonal bonds is the
exact ground state of the Heisenberg model for
J� /J�0.7.11–18 In SrCu2�BO3�2, J� /J is estimated to be
0.64.4

In this paper, we investigate possible phases of doped
valence-bond solid and superconductivity on the Shastry-

Sutherland lattice. In order to study the interplay between the
valence-bond solid order and emergent superconductivity at
finite doping, we use the bond-operator formulation19–21 of
the constrained Hilbert space of correlated electron systems,
extended to general doping and applied to the t-J-V model.
Here, t and V represent the hopping strength and nearest-
neighbor repulsion between electrons, respectively. In con-
trast to previous studies of the Shastry-Sutherland
model,22–24 the emergent superconducting state is directly re-
lated to the underlying valence-bond solid order at the half-
filling. For example, the valence-bond solid order is so ro-
bust that superconductivity always coexists with it, as shown
in the resulting phase diagram of Fig. 2.

When the nearest-neighbor repulsion V is smaller than a
critical value Vc, a finite density of the doped holes can re-
main paired within each valence-bond singlet or dimer on the

FIG. 1. �Color online� Schematic diagram for the ground states
on the Shastry-Sutherland lattice. The valence-bond solid state is
the ground state at half-filling, as depicted in the left figure where
ellipses represent spin-singlet pairs. When doped with holes, the
system exhibits superconductivity in addition to the coexisting
valence-bond solid order. Furthermore, when the nearest-neighbor
repulsive interaction V is larger than a critical value Vc, the
plaquette D-wave superconductivity appears in a range of doping
concentration x, with a peculiar spatial pattern, as shown in the right
figure. In this situation, the pairing amplitudes residing in the four
links encircling the horizontal dimers have the opposite sign to
those for the vertical dimers. Different colors are used to emphasize
the plaquette pattern of the pairing amplitude.
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diagonal bonds. This leads to S-wave superconductivity. On
the other hand, when V is larger than Vc, the Coulomb repul-
sion can prevent doped holes from occupying the same
dimer. At larger doping concentrations, the doped holes tend
to develop D-wave pairing correlation between nearby
dimers of the valence-bond singlets. Consequently, the su-
perconducting order parameter acquires an interesting phase
relation on the square-lattice link, depending on whether the
square-lattice links encircle the horizontal or vertical dimers
�see Fig. 1�. More specifically, all the links within the same
plaquette have the same sign, but those in the nearest-
neighbor plaquettes have the opposite sign. Since this looks
like D-wave symmetry at long distances, we call it the
plaquette D-wave superconductivity. Notice, however, that
this is different from the ordinary d-wave superconductor on
the square lattice where the sign alternates for different links
within the same plaquette. This peculiar structure comes
from the underlying valence-bond-solid order. The simulta-
neous presence of the valence-bond order and superconduc-
tivity can, in principle, be checked by x ray or neutron scat-
tering experiments.

The rest of the paper is organized as follows. In Sec. II,
we review the bond operator formulation for doped magnets.
In Sec. III, the t-J-V Hamiltonian is written in the bond-
operator representation and the mean-field theory is ex-
plained. In Sec. IV, the results of the mean-field theory and
the phase diagram are discussed. We conclude in Sec. V.
Some details of the computations are relegated to Appendix.

II. BOND-OPERATOR FORMALISM

We start with the bond-operator theory by setting up an
exact mapping between bond operators and usual electron
creation operators.19–21 Let c1a

† and c2a
† �a= ↑ , ↓ � be the elec-

tron creation operators on the left and right sites, respec-
tively, of the lattice link that a horizontal dimer occupies �see
Fig. 1�. In the limit of large on-site repulsive interaction U,
any state with two electrons at the same site is excluded from
the low-energy Hilbert space which, in turn, can be repre-
sented by nine “bond-particle” creation operators defined as
follows.

�i� Singlet boson for spin-Peierls order,

s†�v� =
1
�2

�abc1a
† c2b

† �0� , �1�

where �0� is the electron vacuum and �v� is the imaginary
vacuum void of any bond particle. Here, �ab is the second-
rank antisymmetric tensor with �↑↓=1. From now on, we
adopt the summation convention for repeated spin indices
�such as a and b above� throughout this paper unless men-
tioned otherwise.

�ii� Triplet magnon,

t�
† �v� =

1
�2

�bc
� �cac1a

† c2b
† �0� , �2�

where �ab
� ��=x ,y ,z� are the usual Pauli matrices.

�iii� Single-hole fermion,

h1a
† �v� = c1a

† �0� ,

h2a
† �v� = c2a

† �0� . �3�

�iv� Double-hole boson for the empty state,

d†�v� = �0� . �4�

As indicated by the names, the operators s, d, and t� all
obey the canonical boson commutation relations, while h1a
and h2a satisfy the canonical fermion anticommutation rela-
tions. To eliminate unphysical states from the enlarged Hil-
bert space, the following constraint needs to be imposed on
the bond-particle Hilbert space,

s†s + t�
† t� + h1a

† h1a + h2a
† h2a + d†d = 1. �5�

Constrained by this equation, the exact expressions for the
spin and electron creation operators can be written in terms
of the bond operators. For example,

S1� =
1

2
�s†t� + t�

†s − i����t�
† t�� +

1

2
�ab

� h1a
† h1b,

S2� = −
1

2
�s†t� + t�

†s + i����t�
† t�� +

1

2
�ab

� h2a
† h2b,

c1a
† = h1a

† d +
1
�2

�abs†h2b −
1
�2

�ac�cb
� t�

†h2b,

c2a
† = h2a

† d +
1
�2

�abs†h1b +
1
�2

�ac�cb
� t�

†h1b, �6�

where ���� is the third rank antisymmetric tensor with �xyz
=1.

Now, in order to cover the full Shastry-Sutherland lattice,
we need nine additional bond operators representing the
electronic Hilbert space associated with the vertical dimers
corresponding to the sites 3 and 4. For example, �� indicates
the triplet magnon in the vertical dimers, while h3a and h4a
represent the corresponding single-hole fermions. While
nonuniform condensations of the spin-Peierls singlet and/or

FIG. 2. �Color online� Phase diagram of the t-J-V model on the
Shastry-Sutherland lattice as a function of hole concentration x and
the nearest-neighbor repulsive interaction V. The thick line separat-
ing the normal metal and the S-wave superconducting phase is a
first-order phase boundary, while other boundaries are all second
order. The undoped Mott-insulating state is represented by the thick
solid line at x=0.
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double-hole bosons are, in general, possible, we focus only
on the uniform phases in this study. Thus, the condensation
densities of the singlet and double-hole bosons will be rep-

resented by s̄ and d̄ for both horizontal and vertical dimers.

III. CHOICE OF HAMILTONIAN AND BOND OPERATOR
MEAN FIELD THEORY

We consider the following t-J-V Hamiltonian:

H = P̂G�− �
�i,j�

tij�cia
† cja + H.c.� − ��

i

cia
† cia + �

�i,j�
JijSi · S j

+ �
�i,j�

Vijninj	P̂G, �7�

where P̂G is the Gutzwiller projection operator imposing the
no-double-occupancy constraint. tij and Jij are the electron
hopping matrix element and antiferromagnetic exchange in-
teraction, respectively. In this paper, we set tij = t and Jij =J
within a dimer and tij = t� and Jij =J� between neighboring
dimers. We take J� /J=0.64 from the experiments on
SrCu2�BO3�2.4,22 From the large-U expansion of the Hubbard
model, we can then set t� / t=�J� /J=0.8. However, the pa-
rameter J� / t�, which is important for hole dynamics, is not
available experimentally. Thus, we follow the convention
used in previous works22 and take J� / t�=0.3. Also, � is the
chemical potential and ni is the electron density operator.
Finally, for convenience, the nearest-neighbor repulsive in-
teraction Vij is set to V for both the two sites within dimer
and those between the nearest-neighbor dimers.

We now write the t-J-V Hamiltonian solely in terms of the
bond particle operators.19 As usual, the constraint on the
bond-particle operators is imposed by the Lagrange multi-
plier method. Residual interactions between bond particles
are analyzed via quadratic decoupling of quartic terms in a
similar manner to the usual Hartree-Fock-BCS treatment.
For the mean-field description, we consider the following
order parameters:

Px 
 �ti�
† �i+x̂,��, Qx 
 �ti��i+x̂,�� ,

	x = �h1ia
† h3,i−x̂,a� = �h1ia

† h4,i−x̂,a� = �h2ia
† h3,i+x̂,a� = �h2ia

† h4,i+x̂,a� ,


x = �h1i↓h3,i−x̂,↑� = �h1i↓h4,i−x̂,↑� = �h2i↓h3,i+x̂,↑� = �h2i↓h4,i+x̂,↑� ,

�8�

where i is the dimer index of the horizontal dimers and i� x̂
indicates the locations of the neighboring vertical dimers.
The order parameters for the y direction can be defined simi-
larly.

We consider the possibility that the valence-bond-solid
order persists even at nonzero doping. We further consider
the condensation of d bosons, but neglect the possibility of
triplet condensation because we are mostly concerned about
paramagnetic phases in this work. All of the order param-
eters �P, Q, 	, and 
 for both x and y directions� defined

above as well as s̄, d̄, the chemical potential �, and the
Lagrange multiplier � are determined by solving a coupled

set of four saddle-point equations and eight self-consistency
equations. Details of the computational procedure are pre-
sented in Appendix.

Before we discuss the results obtained from the saddle-
point mean-field theory, we would like to mention the stabil-
ity of saddle-point solutions against fluctuations in our prob-
lem. In general, full stability analysis is not an easy task. In
the current situation, however, we argue that such analysis is
not necessary since our saddle-point solution is robust. This
is basically due to the fact that there exists a finite spin gap in
the undoped regime where the valence-bond solid state is the
exact ground state. The valence-bond solid ground state is
protected from fluctuations by the finite spin gap. Supercon-
ducting states emerging at finite doping are derived from this
parent state. As long as the parent state is the valence-bond
solid state, it is a generic consequence that superconductivity
appears.

IV. RESULTS OF THE MEAN-FIELD THEORY AND THE
PHASE DIAGRAM

At zero doping, the system is in a robust valence-bond
solid phase. In our bond-operator theory, the robustness of
the ground state can be seen by the complete localization of
triplet magnons: the t� and �� dispersions are completely flat
and high in energy. It can easily be shown that, at the qua-
dratic order, the triplet magnons on the Shastry-Sutherland
lattice are completely decoupled from the singlet contribu-
tions �notice that the coupling between the singlets and trip-
lets at the quadratic order was the main driving force for the
triplet dispersion in the square-lattice case19�. This leads to
the triplet Hamiltonian with no dispersive quadratic part.
Thus, the only way to generate the triplet dispersion is
through the saddle-point order parameters, Px, Py, Qx, and
Qy. It turns out, however, that all of the above order param-
eters are actually zero for any J� /J at half-filling in our
mean-field theory so that the triplets are completely local-
ized.

Now, let us consider the case of nonzero doping. In our
Hartree-Fock-BCS saddle-point approximation, supercon-
ductivity is found to appear at any nonzero doping when one
neglects long-range charge inhomogeneities such as the
Wigner crystal order at very small x. In the bond-operator
representation, the electron superconducting order parameter
can be computed from

x = �ab�c1ia
† c3,i−x̂,b

† � = �ab�c1ia
† c4,i−x̂,b

† �

= �ab�c2ia
† c3,i+x̂,b

† � = �ab�c2ia
† c4,i+x̂,b

† �

= �2d̄2 − s̄2 − Qx�
x − �2s̄d̄	x. �9�

The superconducting order parameter for the y direction is
defined similarly. The doping dependence of  is plotted in
Fig. 3 along with the singlet boson condensate density s̄ and

the double-hole boson condensate density d̄.
While  can be a complex number in general, it turns out

to be real for most of the phase space, barring an arbitrary
overall phase factor �see Fig. 2�. In Fig. 2, however, there is
a narrow region where the S- and D-wave superconductivi-
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ties coexist in the form of an S+ iD state similar to the results
of previous studies on the square lattice.27 In this case, x is
a complex number and x=

y
*. As shown in Eq. �9�, the

h-fermion pairing amplitude 
 is the key element in deter-
mining the sign of  and thereby the pairing symmetry of the
electronic superconducting order parameter. Generally, the
momentum dependence of 
 can be written as follows:


S+iD = 
x cos kx + 
y cos ky

= 
ei� cos kx + 
e−i� cos ky


 
S�cos kx + cos ky� + i
D�cos kx − cos ky� .

�10�

If both 
S and 
D remain finite, the system possesses the S
+ iD-wave pairing symmetry. In Fig. 4, we plot the detailed
doping dependence of 
S and 
D for V=0.4t.

Notice that the critical exponent � defined in ��x−xc��
shows an interesting behavior when V�Vc. Superconducting
order parameters for both S and D waves show the usual
mean-field behavior, i.e., �=1 /2, when they first emerge. On
the other hand, when they disappear, both exhibit an unusual
exponent of �=1. This deviation from the conventional
mean-field behavior has different origins in each case. For
the S-wave case, the phase boundary corresponds to the criti-
cal point between S+ iD-wave and D-wave superconductivi-
ties, where the presence of nodal fermions leads to a nonana-
lytic cubic term in the expansion of the ground state
energy.25,26 On the other hand, for the D wave, the linearly
vanishing s̄2 gives rise to �=1 �note that 
D remains finite at
the critical point x=0.5 �see Fig. 4�.

It is also interesting to note that our h fermion �defined on
a dimer� is an extended object which carries both the charge
and spin quantum numbers. As a consequence, even when
the h-fermion pairing amplitude is finite, the distance be-
tween two holes in a h-h pair can be larger than the average
distance between uncorrelated holes, as reported in exact di-
agonalization studies.28 In fact, our calculation shows that d̄2

is actually minuscule for small doping so that holes are
mostly paired through h-h pairing rather than d-boson con-
densation. In other words, the hole-hole distance is at least
more than a single lattice spacing apart. The actual coherence
length is dependent on the model parameters. This behavior
is different from what one would expect in the slave-boson-
type theory.22,23

In Fig. 2, the zero-temperature phase diagram is plotted as
a function of hole concentration x and the nearest-neighbor
repulsive interaction V. The overall shape of the phase dia-
gram is determined by the behavior of the d-boson conden-
sate, which corresponds to the local pairing of holes within
dimers. For V�Vc�0.23t, the d-boson condensation always
occurs, generating the concomitant emergence of S-wave su-
perconductivity rather than D wave with a nodal structure.
On the other hand, for V�Vc, there is a V-dependent critical
hole concentration xc, where d̄ vanishes. It is this collapse of
d-boson condensates that makes pairing more long ranged
and finally leads to the emergence of D-wave superconduc-
tivity.

The detailed x dependence of the superconducting order
parameter  is shown in Fig. 3. For V=0.4t�Vc, the S-wave
superconducting order parameter and the d-boson condensate
density go to zero simultaneously at x�0.431. The collapse
of the d-boson condensate at finite doping, in turn, imposes a
precise upper bound on the hole concentration, up to which
the valence-bond order can exist. To see this, note that, in the
bond-operator representation, the chemical potential � is

fixed to satisfy �h1ia
† h1ia+h2ia

† h2ia�+2d̄2=2x. A similar equa-

tion exists for h3 and h4 fermions. When d̄2=0, hole doping
can be achieved only through h fermions. In this situation,
the hole concentration cannot exceed x=1 /2 where every
dimer has exactly one electron. Note that, for V=0.1t�Vc,

d̄2 increases monotonically as x increases and finally reaches
unity at x=1.

FIG. 3. �Color online� Superconducting order parameter  as
well as condensation densities of the spin-Peierls singlets s̄ and

double-hole bosons d̄ as a function of hole concentration x. When

V=0.4t�Vc �top panel�, S-wave  and d̄ simultaneously vanish at
x=0.431. Before the full plaquette D-wave superconductivity sets
in at larger x, there is a region, 0.389�x�0.431, where the S- and
D-wave superconductivities coexist in the form of S+ iD wave. Fi-
nally, at x=0.5, the plaquette D-wave superconducting order param-
eter becomes zero and so does s̄. No valence-bond solid correlation

exists for x�0.5. When V=0.1t�Vc �bottom panel�, d̄ increases
monotonically as a function of x while s̄ remains finite all the way

to x=1. For clarity, d̄2 is magnified 20 times in the top panel.

FIG. 4. �Color online� h-fermion pairing amplitude 
 as a func-
tion of hole concentration x. In the plot, 
S and 
D indicate the S-
and D-wave components of 
, respectively. Note that there is a
region, 0.389�x�0.431, where the S- and D-wave superconduc-
tivities coexist in the form of the S+ iD wave.
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The plaquette D-wave superconducting order parameter
found here has a peculiar spatial pattern, as shown in Fig. 1.
As explained in the Introduction, this pattern is completely
different from the corresponding pattern of the conventional
d-wave superconducting state that previous slave-boson
theories would predict.22,23 We argue that the order parameter
pattern of our D-wave state is rather natural in the limit of
strong dimerization. In this limit, two electrons within the
same dimer lose their independent local coordinates and
share the same single dimer index. Then, the links of the
plaquette enclosing the horizontal �vertical� dimers would
connect only the links of the nearest-neighbor plaquettes that
encircle the vertical �horizontal� dimers. Thus, it is natural to
expect the plaquette-dependent order parameter.

Completely different behaviors of the d-boson condensate
density below and above Vc can physically be understood as
follows. Let us first consider the situation with t=0. In this
situation, when two holes are doped into a unit cell, there are
two possible configurations, as shown in Fig. 5. First, two
electrons are removed from the same dimer while the other
remains intact. In this case, only one singlet pair is removed,
which costs the energy of E1=Es�J with an additional Cou-
lomb energy gain due to the disappearance of nearest-
neighboring electrons: Ed�V. Thus, the total energy cost
would be E1=Es−Ed�J−V. Second, when two electrons are
removed from two dimers, i.e., one hole remains at each
dimer, there are twice the Coulomb energy gain and twice
the exchange energy cost for breaking two singlet pairs. The
total energy cost for the second case is E2�2E1. In conclu-
sion, the energy-cost difference between two configurations
is 
E=E1−E2�V−J. If 
E�0, the first configuration is
preferred and the d bosons can condense. On the other hand,
if 
E�0, the second configuration is favored and the d
bosons may not condense.

In general situations where t�0, the nonzero value of the
d-boson condensate density is adiabatically connected to

S-wave pairing. Notice that physically d̄2 can be regarded as
an on-site component of the pairing amplitude. Since a non-
zero on-site pairing component generically indicates S-wave
pairing, only S-wave pairing is obtained for V�Vc. On the
other hand, the collapse of d-boson condensation for V�Vc
at moderate doping generates the disappearance of the on-
site pairing component and the emergence of D-wave pair-
ing. This is precisely the case shown in the bottom figure of
Fig. 5. It is important to note that the pairing symmetry is

essentially determined by whether or not d̄2 is zero, barring
the narrow region of coexistence between S and D waves.

Finally, we mention the parameter dependence of the
phase diagram. There are three independent parameters in
the problem: J� /J, J� / t�, and J / t. In this paper, we use the
conventional choice of J� / t�=0.3 and fix J / t according to the
condition J� /J= t�2 / t2. There are two possible ways of
changing the value of J� /J: �i� change J� /J while fixing all
other values and �ii� change J� /J while adjusting other val-
ues as well. Our calculation has confirmed that practically
the phase diagram does not change at all in method �i�. In
method �ii�, the phase diagram changes only quantitatively in
the sense that Vc changes as a function of J� /J. In particular,
Vc decreases as J� /J becomes smaller and eventually van-
ishes around J� /J=0.5.

V. CONCLUSION

By analyzing the t-J-V model based on the bond-operator
formalism, we have investigated the phase diagram of the
doped Mott insulator on the Shastry-Sutherland lattice. The
interplay between strong dimerization and nearest-neighbor
repulsive interactions leads to different behaviors of the
doped holes determining the overall phase diagram. If the
nearest-neighbor repulsive interaction V is smaller than a
critical value Vc, the hole pairing within dimers is always
allowed, resulting in S-wave superconductivity at any non-
zero x. On the other hand, if V is larger than Vc, the density
of paired holes within the same dimers vanishes at finite x
and the plaquette D-wave superconductivity with a peculiar
spatial pattern emerges.

Considering clear experimental evidence for the valence-
bond solid state in undoped SrCu2�BO3�2, we believe that the
above conclusions would be valid for a range of realistic
situations. It will be interesting to observe the possible tran-
sition between the S- and D-wave superconducting states.
Finally, we note that, while doping mobile carriers to
SrCu2�BO3�2 has not been achieved yet, there has been a
recent progress in doping quenched nonmagnetic Mg impu-
rities to this material.29
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FIG. 5. �Color online� Schematic diagram showing the origin of
different behaviors of the d-boson condensate density below and

above Vc�0.23t. The bottom figure plots d̄2 as a function of hole
concentration x for V=0.4t �
E�0� and V=0.1t �
E�0�. Note

that for clarity, d̄2 is magnified 30 times in the case of V=0.4t.
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APPENDIX: COMPUTATIONAL DETAILS

Here, we present details of the Hartree-Fock-BCS mean-
field theory in the bond-operator formalism. We begin by
explicitly writing the t-J-V Hamiltonian as follows:

H = P̂G�Ht + HJ + H� + HV�P̂G, �A1�

where

Ht = − t�
i

�c1ia
† c2ia + c3ia

† c4ia + H.c.� − t��
i

�c1ia
† �c3,i−x̂,a

+ c4,i−x̂,a� + c2ia
† �c3,i+x̂,a + c4,i+x̂,a� + H.c.

− t��
i

�c4ia
† �c1,i+ŷ,a + c2,i+ŷ,a� + c3ia

† �c1,i−ŷ,a + c2,i−ŷ,a�

+ H.c. , �A2�

HJ = J�
i

�S1i · S2i + S3i · S4i� + J��
i

�S1i · �S3,i−x̂ + S4,i−x̂�

+ S2i · �S3,i+x̂ + S4,i+x̂� + J��
i

�S4i · �S1,i+ŷ + S2,i+ŷ�

+ S3i · �S1,i−ŷ + S2,i−ŷ� , �A3�

H� = − ��
i

�n1i + n2i − 2 + 2x� − ��
i

�n3i + n4i − 2 + 2x� ,

�A4�

and

HV = V�
i

�n1in2i + n3in4i�

+ V�
i

�n1i�n3,i−x̂ + n4,i−x̂� + n2i�n3,i+x̂ + n4,i+x̂�

+ V�
i

�n4i�n1,i+ŷ + n2,i+ŷ� + n3i�n1,i−ŷ + n2,i−ŷ� .

�A5�

In the next section, the t-J-V Hamiltonian is expressed solely
in terms of bond particles.

1. Hamiltonian in the bond-operator representation

Taking usual steps in any saddle-point theory, we first
replace the full Gutzwiller projection by adding the Lagrange
multiplier term. In the bond-operator representation, this
Lagrange multiplier term is written as follows:

H� = − ��
i

�si
†si + ti�

† ti� + h1ia
† h1ia + h2ia

† h2ia + di
†di − 1�

− ��
i

��i
†�i + �i�

† �i� + h3ia
† h3ia + h4ia

† h4ia + �i
†�i − 1� ,

�A6�

where � is the Lagrange multiplier. Also, �i and �i represent
the singlet boson and double-hole boson operators for the ith
vertical dimer, respectively. Other operators are defined in

the main text. Under the constraint imposed by Eq. �A6�, the
usual chemical potential term can be written as follows:

H� = ��
i

�h1ia
† h1ia + h2ia

† h2ia + 2di
†di − 2x�

+ ��
i

�h3ia
† h3ia + h4ia

† h4ia + 2�i
†�i − 2x� . �A7�

Since we focus only on the phases with homogeneous singlet
boson and double-hole boson condensates, from now on, we

set si=si
†=�i=�i

†= s̄ and di=di
†=�i=�i

†= d̄. Furthermore, we
neglect the possibility of triplet condensation in this paper.

By applying the bond-operator representation to all the
remaining terms in the Hamiltonian, the saddle-point Hamil-
tonian can be written as follows:

H = N�0 + Htriplet + Hfermion, �A8�

where the triplet boson Hamiltonian is given by

Htriplet = �
k

Ak�t�
†�k����k� + ��

†�k�t��k�

+ �
k

Bk�t�
†�k���

†�− k� + ���− k�t��k�

+ �
k

Ck�t�
†�k�t��k� + ��

†�k����k� , �A9�

and the single-hole fermion Hamiltonian is given by

Hfermion = Hfermion
�0� + Hfermion

interaction, �A10�

where

Hfermion
�0� = �

k
�ak�h1a

† �k�h2a�k� + h3a
† �k�h4a�k� + H.c.�

+ �
k

bk�h1a
† �k�h1a�k� + h2a

† �k�h2a�k�

+ h3a
† �k�h3a�k� + h4a

† �k�h4a�k� �A11�

and

Hfermion
interaction = �

k
�ck�h3a

† �k�h1a�k� + h2a
† �k�h4a�k� + H.c.�

+ �
k

�dk�h4a
† �k�h1a�k� + h2a

† �k�h3a�k� + H.c.�

+ �
k

�e1k�h3↑
† �k�h1↓

† �− k� + h2↑
† �k�h4↓

† �− k�

+ H.c.� + �
k

�e2k�h1↑
† �k�h3↓

† �− k�

+ h4↑
† �k�h2↓

† �− k� + H.c.�

+ �
k

�f1k�h4↑
† �k�h1↓

† �− k�

+ h2↑
† �k�h3↓

† �− k� + H.c.�

+ �
k

�f2k�h1↑
† �k�h4↓

† �− k�

+ h3↑
† �k�h2↓

† �− k� + H.c.� . �A12�
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In the above expressions, N is the number of unit cells,

�0 = −
3

2
Js̄2 + 2��1 − s̄2 + d̄2 − 2x� − 2��2x − 2d̄2� + J��Qx

2

+ Qy
2 − Px

2 − Py
2� +

3

2
J���	x�2 + �	y�2 + 4�
x�2 + 4�
y�2�

+ V�2 + 2d̄2 − 4x� + 8V�1 − x�2,

Ak = J��Px cos kx + Py cos ky� ,

Bk = − J��Qx cos kx + Qy cos ky� ,

Ck = J/4 − � , �A13�

and

ak = − t, bk = � ,

ck = cRk + icIk, dk = dRk + idIk,

e1k = eRk + ieIk, e2k = eRk − ieIk,

f1k = fRk + if Ik, f2k = fRk − if Ik, �A14�

where

cRk = − t��d̄2 −
1

2
s̄2��cos kx + cos ky� +

t�

2
�Px cos kx

+ Py cos ky� −
3

8
J��	x cos kx + 	y cos ky� ,

cIk = − t��d̄2 +
1

2
s̄2��sin kx − sin kx� +

t�

2
�− Px sin kx

+ Py sin ky� −
3

8
J��	x sin kx − 	y sin ky� , �A15�

dRk = − t��d̄2 −
1

2
s̄2��cos kx + cos ky� −

t�

2
�Px cos kx

+ Py cos ky� −
3

8
J��	x cos kx + 	y cos ky� ,

dIk = − t��d̄2 +
1

2
s̄2��sin kx + sin ky� +

t�

2
�Px sin kx

+ Py sin ky� −
3

8
J��	x sin kx + 	y sin ky� , �A16�

eRk = − �2t�d̄s̄�cos kx + cos ky� −
3

4
J��
x cos kx + 
y cos ky� ,

eIk = −
3

4
J��
x sin kx − 
y sin ky� , �A17�

and

fRk = − �2t�d̄s̄�cos kx + cos ky� −
3

4
J��
x cos kx + 
y cos ky� ,

f Ik = −
3

4
J��
x sin kx + 
y sin ky� . �A18�

Of course, the order parameters, P, Q, 	, and 
, should be
determined self-consistently by satisfying the following con-
ditions:

Px 
 �ti�
† �i+x̂,��, Qx 
 �ti��i+x̂,�� ,

	x = �h1ia
† h3,i−x̂,a� = �h1ia

† h4,i−x̂,a� = �h2ia
† h3,i+x̂,a� = �h2ia

† h4,i+x̂,a� ,


x = �h1i↓h3,i−x̂,↑� = �h1i↓h4,i−x̂,↑� = �h2i↓h3,i+x̂,↑� = �h2i↓h4,i+x̂,↑� ,

�A19�

and similar equations for the y direction.
As seen in Eq. �A14� and subsequent equations, ck, dk, ek,

and fk are, in general, complex. In this case, it is not easy to
obtain analytic expressions for the h-fermion spectrum. For-
tunately, however, it turns out that we can make the follow-
ing approximations:

ck � cRk, dk � dRk,

e1k � eRk, e2k � eRk,

f1k � fRk, f2k � fRk. �A20�

The justification for the above approximation will be given
in Appendix where we discuss the physical meaning of the
approximation and provide supporting numerical results. For
the time being, however, we proceed to derive saddle-point
equations by accepting Eq. �A20�.

2. Self-consistent saddle-point equations

After the Bogoliubov transformation, the saddle-point
Hamiltonian in Eq. �A8� can be written in the following way:

H = N�0 + �
k

�
l=1

4

�bk − �l�k� + �
k

�
l=1

4

�l�k��la
† �k��la�k�

+ �
k
�w�1�k��1�

† �k��1��k� +
3

2
�w�1�k� − Ck�

+ �
k
�w�2�k��2�

† �k��2��k� +
3

2
�w�2�k� − Ck� ,

�A21�

where

w�1�k� = ��Ck + Ak�2 − Bk
2 ,

w�2�k� = ��Ck − Ak�2 − Bk
2 ,

�1�k� = ��ak − bk + ck − dk�2,
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�2�k� = ��ak − bk − ck + dk�2,

�3�k� = ��ak + bk − ck − dk�2 + �ek + fk�2,

�4�k� = ��ak + bk + ck + dk�2 + �ek + fk�2, �A22�

and we set ck=cRk, dk=dRk, ek=eRk, and fk= fRk. In the
above equations, �1��k� and �2��k� describe two bosonic
particles derived from the linear combination of t��k� and
���k�. Similarly, �l�k� denote four fermionic Bogoliubov
quasiparticles obtained from hm�k� and hm

† �−k� �m
=1,2 ,3 ,4�.

Now, the ground state energy per unit cell is given by

�gr =
�H�gr

N
= �0 +

1

N
�
k

�
l=1

4

�bk − �l�k� +
1

N
�
k

3

2
�w�1�k�

− Ck +
1

N
�
k

3

2
�w�2�k� − Ck . �A23�

The four saddle-point equations for s̄, d̄, �, and � can be
obtained by minimizing the ground state energy as follows:

��gr

��
=

���gr/J�
�s̄2 =

��gr

��
=

���gr/J�

�d̄2
= 0, �A24�

where

��gr

��
= 5 − 2s̄2 + 2d̄2 − 4x −

3

2

1

N
�
k
�Ck + Ak

w�1�k�
+

Ck − Ak

w�2�k� 	 ,

���gr/J�
�s̄2 = −

3

2
− 2

�

J
+

t�/J
N

�
k

�cos kx

+ cos ky�
ak + bk − ck − dk

�3�k�
−

t�/J
N

�
k

�cos kx

+ cos ky�
ak + bk + ck + dk

�4�k�
+ �2

d̄

s̄

t�/J
N �

k
�cos kx

+ cos ky�� ek + fk

�3�k�
+

ek + fk

�4�k� 	 ,

��gr

��
= − 4�x − d̄2 − 1� −

1

N
�
k
�−

ak − bk − ck + dk

�1�k�

−
ak − bk + ck − dk

�2�k�
+

ak + bk − ck − dk

�3�k�

+
ak + bk + ck + dk

�4�k� 	 ,

���gr/J�

�d̄2
= 2

�

J
+ 4

�

J
+ 2

V

J
−

2t�/J
N

�
k

�cos kx

+ cos ky�
ak + bk − ck − dk

�3�k�
+

2t�/J
N

�
k

�cos kx

+ cos ky�
ak + bk + ck + dk

�4�k�
+ �2

s̄

d̄

t�/J
N �

k
�cos kx

+ cos ky�� ek + fk

�3�k�
+

ek + fk

�4�k� 	 . �A25�

Self-consistency conditions for eight order parameters can
also be written in terms of Bogoliubov quasiparticle spectra,

Px =
3

4

1

N
�
k

cos kx�Ck + Ak

w�1�k�
−

Ck − Ak

w�2�k� 	 ,

Qx = −
3

4

1

N
�
k

cos kx� Bk

w�1�k�
+

Bk

w�2�k�	 ,

	x =
1

4

1

N
�
k

cos kx
ak + bk − ck − dk

�3�k�

−
1

4

1

N
�
k

cos kx
ak + bk + ck + dk

�4�k�
,


x = −
1

8

1

N
�
k

cos kx� ek + fk

�3�k�
+

ek + fk

�4�k� 	 , �A26�

and additional four self-consistency conditions for Py, Qy,
	y, and 
y are obtained when cos kx is replaced by cos ky.

Finally, it is proven that the ground state energy is mini-
mized always at a physically meaningful saddle point due to
the constraint denoted in Eq. �A6�. Since the number opera-
tor is strictly positive definite �in the sense that all eigenval-
ues are positive definite�, it follows that none of the bond-
particle numbers cannot exceed unity. If any one of the bond-
particle numbers is larger than unity, the constraint enforces
that there must be at least one bond particle which has a
negative particle number. This is not possible since the num-
ber operator is positive definite. This fact does not change
even in the mean-field analysis via the Lagrange multiplier
method since the expectation value of the number operator is

also positive definite. In conclusion, s̄2 and d̄2 generating a
saddle point are strictly bounded between 0 and 1.

3. Validity of the approximated h-fermion dispersion

In order to justify the approximations used in Eq. �A20�,
we start by expressing the fermionic part of the Hamiltonian
in terms of the bonding and antibonding fermionic operators
that can be written as follows:

hi+a 

1
�2

�h1ia + h2ia� ,

hi−a 

1
�2

�h1ia − h2ia� ,
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vi+a 

1
�2

�h3ia + h4ia� ,

vi−a 

1
�2

�h3ia − h4ia� , �A27�

where h+ and h− describe the bonding and antibonding states
for the horizontal dimers, respectively. v+ and v− play ex-
actly the same role for the vertical dimers.

The fermionic part of the Hamiltonian can be decomposed
into three parts:

Hfermion = Hfermion
�0� + H++,−− + H+−,−+, �A28�

where

Hfermion
�0� = �

k
ak�h+a

† �k�h+a�k� − h−a
† �k�h−a�k� + v+a

† �k�v+a�k�

− v−a
† �k�v−a�k� + �

k
bk�h+a

† �k�h+a�k�

+ h−a
† �k�h−a�k� + v+a

† �k�v+a�k� + v−a
† �k�v−a�k� ,

�A29�

H++,−− = �
k

cRk�h+a
† �k�v+a�k� + v+a

† �k�h+a�k� + h−a
† �k�v−a�k�

+ v−a
† �k�h−a�k� + �

k
dRk�h+a

† �k�v+a�k�

+ v+a
† �k�h+a�k� − h−a

† �k�v−a�k� − v−a
† �k�h−a�k�

+ �
k

�eRk�v+↑
† �k�h+↓

† �− k� + h+↑
† �k�v+↓

† �− k�

+ v−↑
† �k�h−↓

† �− k� + h−↑
† �k�v−↓

† �− k� + H.c.�

+ �
k

�fRk�v+↑
† �k�h+↓

† �− k� + h+↑
† �k�v+↓

† �− k�

− v−↑
† �k�h−↓

† �− k� − h−↑
† �k�v−↓

† �− k� + H.c.� , �A30�

and

H+−,−+ = �
k

icIk�v−a
† �k�h+a�k� − h+a

† �k�v−a�k� + v+a
† �k�h−a�k�

− h−a
† �k�v+a�k� + �

k
idIk�v+a

† �k�h−a�k�

− h−a
† �k�v+a�k� + h+a

† �k�v−a�k� − v−a
† �k�h+a�k�

+ �
k

�ieIk�v−↑
† �k�h+↓

† �− k� − h+↑
† �k�v−↓

† �− k�

+ v+↑
† �k�h−↓

† �− k� − h−↑
† �k�v+↓

† �− k� + H.c.�

+ �
k

�if Ik�v+↑
† �k�h−↓

† �− k� − h−↑
† �k�v+↓

† �− k�

+ h+↑
† �k�v−↓

† �− k� − v−↑
† �k�h+↓

† �− k� + H.c.� , �A31�

where it is important to note that H++,−− describes the fer-

mion hopping and pairing processes within the band of the
same bonding character. On the other hand, H+−,−+ contains
mixing processes between the bonding and antibonding
bands. The approximation used in Eq. �A20� corresponds to
the omission of H+−,−+ from Hfermion.

To judge the validity of this approximation, let us first
consider the effect of hopping terms alone from the Hamil-
tonian. In Fig. 6�a�, we plot the full band structure of Hfermion
at half filling. Since the unit cell consists of four spins, there
are four bands. The two bands lying high in energy are al-
most flat, while the other two are dispersive. In Fig. 6�b�, we
show the band structure obtained when Hfermion is approxi-
mated to be Hfermion

�0� +H++,−−. As one can see, the difference
between the full and the approximated band structure is mi-
nor. The almost flat two bands in the full Hamiltonian, which
are high in energy and so do not play important roles at small
hole doping, become completely localized. The shapes of the
other two dispersive bands are only slightly modified. Now,
to explicitly demonstrate the minor influence of the remain-
ing part, i.e., H+−,−+, we consider an extreme situation where
the role of H+−,−+ is maximized. That is, we consider the
band structure of Hfermion

�0� +H+−,−+. As seen in Fig. 6�c�, the
resulting band structure is almost featureless. Thus, the main
effect of H+−,−+ would be providing only a weak distortion to
the bands of H++,−−.

Since normal mixing between the bands with different
bonding characters generates minor effects, it is reasonable
to assume that the pairing process between different bonding
bands also does not modify the band structure significantly. It
can be further argued that these results are valid also for the
case of finite doping because the fermionic band structure
has similar structure to the half-filled case, as can be seen in
Eq. �A22�, and there is no level crossing upon doping. In
conclusion, we believe that the approximation used in Eq.
�A20� is accurate enough to capture the essential physics,
while it renders convenient simplification in calculations.

FIG. 6. �Color online� Band structure of the h fermion at half-
filling. �a� The full band structure of the mean-field Hamiltonian,
Hfermion=Hfermion

�0� +H+,−+H++−−,−+. �b� The band structure obtained
if Hfermion is approximated to be Hfermion

�0� +H++,−−. �c� The additional
band structure due to the remaining term, H+−,−+. For convenience,
we plot the band structure of Hfermion

�0� +H+−,−+.
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